108 research outputs found

    Hydrodynamics in an external field

    Full text link
    The methods of statistical dynamics are applied to a fluid with 5 conserved fields (the mass, the energy, and the three components of momentum) moving in a given external potential. When the potential is zero, we recover a previously derived system of parabolic differential equations, called "corrections to fluid dynamics".Comment: extends results of math-ph/0105013 in the presence of an external field; to appear in Rep. Math. Phys. (2002

    On Birkhoff's theorem for doubly stochastic completely positive maps of matrix algebras

    Get PDF
    AbstractA study is made of the extreme points of the convex set of doubly stochastic completely positive maps of the matrix algebra Mn. If n = 2 the extreme points are precisely the unitary maps, but if n ⩾ 3 there are nonunitary extreme points, examples of which are exhibited. A tilde operation is defined on the linear maps of Mn and used to give an elementary derivation of a result of Kummerer and Maassen

    The quantum information manifold for epsilon-bounded forms

    Full text link
    Let H be a self-adjoint operator bounded below by 1, and let V be a small form perturbation such that RVS has finite norm, where R is the resolvent at zero to the power 1/2 +epsilon, and S is the resolvent to the power 1/2-epsilon. Here, epsilon lies between 0 and 1/2. If the Gibbs state defined by H is sufficiently regular, we show that the free energy is an analytic function of V in the sense of Frechet, and that the family of density operators defined in this way is an analytic manifold modelled on a Banach space.Comment: 12 pages, report to Torun Conference, 199

    QCD recursion relations from the largest time equation

    Full text link
    We show how by reassembling the tree level gluon Feynman diagrams in a convenient gauge, space-cone, we can explicitly derive the BCFW recursion relations. Moreover, the proof of the gluon recursion relations hinges on an identity in momentum space which we show to be nothing but the Fourier transform of the largest time equation. Our approach lends itself to natural generalizations to include massive scalars and even fermions.Comment: 18 pages, 2 figures, minor changes to Sect.

    Spin, Statistics, and Reflections, II. Lorentz Invariance

    Full text link
    The analysis of the relation between modular P1_1CT-symmetry -- a consequence of the Unruh effect -- and Pauli's spin-statistics relation is continued. The result in the predecessor to this article is extended to the Lorentz symmetric situation. A model \G_L of the universal covering \widetilde{L_+^\uparrow}\cong SL(2,\complex) of the restricted Lorentz group L+L_+^\uparrow is modelled as a reflection group at the classical level. Based on this picture, a representation of \G_L is constructed from pairs of modular P1_1CT-conjugations, and this representation can easily be verified to satisfy the spin-statistics relation

    Massless scalar field in two-dimensional de Sitter universe

    Full text link
    We study the massless minimally coupled scalar field on a two--dimensional de Sitter space-time in the setting of axiomatic quantum field theory. We construct the invariant Wightman distribution obtained as the renormalized zero--mass limit of the massive one. Insisting on gauge invariance of the model we construct a vacuum state and a Hilbert space of physical states which are invariant under the action of the whole de Sitter group. We also present the integral expression of the conserved charge which generates the gauge invariance and propose a definition of dual field.Comment: 13 page

    Perturbative Quantum Field Theory at Positive Temperatures: An Axiomatic Approach

    Get PDF
    It is shown that the perturbative expansions of the correlation functions of a relativistic quantum field theory at finite temperature are uniquely determined by the equations of motion and standard axiomatic requirements, including the KMS condition. An explicit expression as a sum over generalized Feynman graphs is derived. The canonical formalism is not used, and the derivation proceeds from the beginning in the thermodynamic limit. No doubling of fields is invoked. An unsolved problem concerning existence of these perturbative expressions is pointed out.Comment: 17pages Late

    CP violation in the effective action of the Standard Model

    Full text link
    Following a suggestion by Smit, the CP odd terms of the effective action of the Standard Model, obtained by integration of quarks and leptons, are computed to sixth order within a strict covariant derivative expansion approach. No other approximations are made. The final result so derived includes all Standard Model gauge fields and Higgs. Remarkably, at the order considered in this work, all parity violating contributions turn out to be zero. Non vanishing CP violating terms are obtained in the C-odd P-even sector. These are several orders of magnitude larger than perturbative estimates. Various unexpected regularities in the final result are noted.Comment: 32 pages, no figures. Section added. To appear in JHE

    Relativity and EPR Entanglement: Comments

    Get PDF
    Recent experiment by Zhinden et al (Phys. Rev {\bf A} 63 02111, 2001) purports to test compatibility between relativity and quantum mechanics in the classic EPR setting. We argue that relativity has no role in the EPR argument based solely on non-relativistic quantum formalism. It is suggested that this interesting experiment may have significance to address fundamental questions on quantum probability.Comment: 6 pages, no figure; Submitted to Phys. Rev.
    corecore